Image Stitching by Line-guided Local Warping with Global Similarity Constraint
نویسندگان
چکیده
Low-textured image stitching remains a challenging problem. It is difficult to achieve good alignment and it is easy to break image structures due to insufficient and unreliable point correspondences. Moreover, because of the viewpoint variations between multiple images, the stitched images suffer from projective distortions. To solve these problems, this paper presents a line-guided local warping method with a global similarity constraint for image stitching. Line features which serve well for geometric descriptions and scene constraints, are employed to guide image stitching accurately. On one hand, the line features are integrated into a local warping model through a designed weight function. On the other hand, line features are adopted to impose strong geometric constraints, including line correspondence and line colinearity, to improve the stitching performance through mesh optimization. To mitigate projective distortions, we adopt a global similarity constraint, which is integrated with the projective warps via a designed weight strategy. This constraint causes the final warp to slowly change from a projective to a similarity transformation across the image. Finally, the images undergo a two-stage alignment scheme that provides accurate alignment and reduces projective distortion. We evaluate our method on a series of images and compare it with several other methods. The experimental results demonstrate that the proposed method provides a convincing stitching performance and that it outperforms other state-of-the-art methods.
منابع مشابه
Image stitching with perspective-preserving warping
Image stitching algorithms often adopt the global transformation, such as homography, and work well for planar scenes or parallax free camera motions. However, these conditions are easily violated in practice. With casual camera motions, variable taken views, large depth change, or complex structures, it is a challenging task for stitching these images. The global transformation model often pro...
متن کاملNatural Image Stitching with the Global Similarity Prior
This paper proposes a method for stitching multiple images together so that the stitched image looks as natural as possible. Our method adopts the local warp model and guides the warping of each image with a grid mesh. An objective function is designed for specifying the desired characteristics of the warps. In addition to good alignment and minimal local distortion, we add a global similarity ...
متن کاملRegional Linear Warping for Image Stitching with Dominant Edge Extraction
Image stitching techniques produce an image with wide field-of-view by aligning multiple images with narrow field-of-view. While conventional algorithms successfully stitch images with small parallax, structure misalignment may occur when input images contain large parallax. This paper presents an image stitching algorithm which aligns images with large parallax by regional linear warping. To t...
متن کاملParallax-Robust Surveillance Video Stitching
This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent a...
متن کاملQuasi-homography warps in image stitching
Naturalness of warping is gaining extensive attention in image stitching. Recent warps such as SPHP, AANAP and GSP, use a global similarity to effectively mitigate projective distortion (which enlarges regions), however, they necessarily bring in perspective distortion (which generates inconsistency). In this paper, we propose a quasi-homography warp, which balances perspective distortion again...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.07935 شماره
صفحات -
تاریخ انتشار 2017